implicit conversions in c++

Implicit conversions in c++

we can mix the data types in expression. for example n=6+3.9; is valid statement. whenever data types are mixed in an expression, c++ programming performs the conversions automatically. this process is know as automatic conversion or implicit .

when the compiler encounters an expression, it divides the expressions into the sum expressions consisting of one operator and one or two operands. for binary operator, if the operands type differ, the compiler converts one of them to match with the other, using the rule that the “smaller” type is converted to the “wider” type , for example if one of the operand is an int and the other is a float, the int is converted into float because a float is wider than an int. the water fall model shown in fig

implicit conversion in c++ picture

whenever a clear or short int appears in an expression , it is converted to an int, this is called integral widening conversion.

The implicit conversion is applied only after complete all integral widening conversion.

Type of result of mixed-mode arithmetic operations are in table

mix mode operation in c++ picture
  • C++ Dynamic Initialization of Objects
  • C++ Copy Constructor
  • C++ Dynamic Constructor
  • C++ Destructors
  • C++ Exercise
  • C++ Operator Overloading
  • C++ Overloading Unary Operators
  • Const pointer in C
  • Void pointer in c
  • C++ Overloading Binary Operators
  • C++ Overloading Binary Operators Using Friends
  • C++ Manipulation String Using Operators
  • C++ Rules for overloading operators
  • C++ Exercise
  • C++ Basic To class Type
  • C++ Class TO Basic Type
  • C++ One class To another class type
  • C++ Exercise
  • C++ Inheritance introduction
  • C++ Single Inheritance
  • C++ Multiple Inheritance
  • C++ Ambiguity Resolution in inheritance
  • C++ Hierarchical Inheritance
  • C++ Hybrid Inheritance
  • C++ Virtual Base Classes
  • C++ Exercise
  • C++ abstract class
  • C++ nesting of classes
  • C++ Exercise
  • C++ polymorphism
  • C++ Exercise
  • C++ pointers
  • C++ Pointers TO object
  • C++ this pointer
  • C++ Pointer to Derived class
  • C++ Virtual functions
  • C++ Exercise
  • C++ streams
  • C++ unformatted I/O operations
  • C++ Put() and get()
  • C++ getline() and write()
  • C++ Formatted console I/O
  • C++ Manipulators
  • C++ Exercise
  • C++ file handling
  • C++ file stream classes
  • C++ Open and closing file
  • C++ open using constructor
  • C++ open using open()
  • C++ Detecting End of file
  • C++ File modes
  • C++ File pointers and Manipulators
  • C++ Sequential I/O
  • C++ Reading and Writing
  • C++ Updating a File
  • C++ Error handling In File
  • C++ Command Line Arguments
  • C++ Exercise
  • C++ Template introduction
  • C++ Class Templates with multiple Parameters
  • C++ Function templates
  • C++ Function templates with multiple parameters
  • C++ member function Template
  • C++ Exercise
  • C++ Exception handling
  • C++ Basics of Exception Handling
  • C++ Exception Handling Mechanism
  • C++ Throwing Mechanism
  • C++ Catch Mechanism
  • C++ Catch all Exceptions
  • C++ Re-Throwing An Exception
  • C++ Specifying Exceptions
  • C++ Exercise